Author(s): Mndham, A.E., Micklesfield, L.K., Karpe, F., Kengne A.P., Chikowore, T., Kufe, C.N., et al.
Source: Diabetologia https://doi.org/10.1007/s00125-022-05788-1
Abstract:
Aims/hypothesis: Using a targeted proteomics approach, we aimed to identify and validate circulating proteins associated with impaired glucose metabolism (IGM) and type 2 diabetes in a Black South African cohort. In addition, we assessed sex-specific associations between the validated proteins and pathophysiological pathways of type 2 diabetes.
Methods: This cross-sectional study included Black South African men (n=380) and women (n=375) who were part of the Middle-Aged Soweto Cohort (MASC). Dual-energy x-ray absorptiometry was used to determine fat mass and visceral adipose tissue, and fasting venous blood samples were collected for analysis of glucose, insulin and C-peptide and for targeted proteomics, measuring a total of 184 pre-selected protein biomarkers. An OGTT was performed on participants without diabetes, and peripheral insulin sensitivity (Matsuda index), HOMA-IR, basal insulin clearance, insulin secretion (C-peptide index) and beta cell function (disposition index) were estimated. Participants were classified as having normal glucose tolerance (NGT; n=546), IGM (n=116) or type 2 diabetes (n=93). Proteins associated with dysglycaemia (IGM or type 2 diabetes) in the MASC were validated in the Swedish EpiHealth cohort (NGT, n=1706; impaired fasting glucose, n=550; type 2 diabetes, n=210).
Results: We identified 73 proteins associated with dysglycaemia in the MASC, of which 34 were validated in the EpiHealth cohort. Among these validated proteins, 11 were associated with various measures of insulin dynamics, with the largest number of proteins being associated with HOMA-IR. In sex-specific analyses, IGF-binding protein 2 (IGFBP2) was associated with lower HOMA-IR in women (coefficient –0.35; 95% CI –0.44, –0.25) and men (coefficient –0.09; 95% CI –0.15, –0.03). Metalloproteinase inhibitor 4 (TIMP4) was associated with higher insulin secretion (coefficient 0.05; 95% CI 0.001, 0.11; p for interaction=0.025) and beta cell function (coefficient 0.06; 95% CI 0.02, 0.09; p for interaction=0.013) in women only. In contrast, a stronger positive association between IGFBP2 and insulin sensitivity determined using an OGTT (coefficient 0.38; 95% CI 0.27, 0.49) was observed in men (p for interaction=0.004). A posteriori analysis showed that the associations between TIMP4 and insulin dynamics were not mediated by adiposity. In contrast, most of the associations between IGFBP2 and insulin dynamics, except for insulin secretion, were mediated by either fat mass index or visceral adipose tissue in men and women. Fat mass index was the strongest mediator between IGFBP2 and insulin sensitivity (total effect mediated 40.7%; 95% CI 37.0, 43.6) and IGFBP2 and HOMA-IR (total effect mediated 39.1%; 95% CI 31.1, 43.5) in men.
Conclusions/interpretation: We validated 34 proteins that were associated with type 2 diabetes, of which 11 were associated with measures of type 2 diabetes pathophysiology such as peripheral insulin sensitivity and beta cell function. This study highlights biomarkers that are similar between cohorts of different ancestry, with different lifestyles and sociodemographic profiles. The African-specific biomarkers identified require validation in African cohorts to identify risk markers and increase our understanding of the pathophysiology of type 2 diabetes in African populations.
Keywords: Adiposity; Beta cell function; Ethnicity; IGFBP2; Impaired glucose metabolism; Insulin clearance; Insulin secretion; Insulin sensitivity; Obesity; TIMP4; Type 2 diabetes