Title: Investigating The Presence of SARS-CoV-2 in Wastewater at Three Wastewater Treatment Plants in Gauteng, South Africa

Jambo Don^{1,4}, Singh Tanusha^{1,2,3}, and Gomba Annancietar¹

¹National Institute for Occupational Health, A Division of the National Health Laboratory Service, Johannesburg 2001, South Africa

²Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, South Africa

³Department of Environmental Health, School of Health Sciences, University of Johannesburg, South Africa

⁴Faculty of Natural and Agricultural Sciences, North-West University, South Africa Correspondence: <u>donjambo1@gmail.com</u>

Abstract:

Introduction

The coronavirus disease (COVID-19) pandemic caused by widespread severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, resulted in global alarm due to its high mortality rate and negative socio-economic impacts. Subsequently, SARS-CoV-2 genetic material detection in wastewater raised concerns over potential occupational exposure to wastewater treatment plant (WWTP) personnel and implications for water reuse.

Objectives

- Determination of SARS-CoV-2 RNA in wastewater and aerosols
- Comparison of viral load differences between samples from the different sampling/process points and treatment plants
- Evaluation of the infection potential of SARS-CoV-2 detected in wastewater and its implications for worker health and water reuse
- Determination of viral DNA/RNA pathogens present alongside SARS-CoV-2 in wastewater.

<u>Methods</u>

Samples (wastewater, contact surface swabs, and bioaerosols) were tested for SARS-CoV-2 RNA using real-time reverse transcriptase PCR, with positive samples subsequently analysed for SARS-CoV-2 RNA infectivity using Vero-E6 cells. Results and Discussion

SARS-CoV-2 RNA was detected in 65% (111/172) of the samples. The percentages of positive detection varied between sample types, namely the influent (74%, 26/35), primary sludge (100%, 26/26), secondary settling tank effluent (71%, 20/28), activated sludge (66%, 19/29), final effluents (57%, 16/28), surface swabs (25%, 4/16) and bioaerosol (0%, 1/10) samples. The detected SARS-CoV-2 RNA concentrations across all three WWTPs ranged between 1.11x 10° and 4.19 x 10^{2} gene copy equivalents/ml, with viral RNA decay along treatment stages observed only in two plants. Infectivity tests showed no infection potential. Testing for other viral pathogens is still underway.

Conclusion

The presence of SARS-CoV-2 RNA in the final treated effluents suggests residual viral RNA persists despite wastewater treatment. However, infectivity studies suggest that SARS-CoV-2 loses viability in wastewater, indicating no direct evidence of health risks to WWTP personnel or during treated wastewater reuse.